Classification of new class entities requires collecting and annotating hundreds or thousands of samples that is often prohibitively costly. Few-shot learning suggests learning to classify new classes using just a few examples. Only a small number of studies address the challenge of few-shot learning on spatio-temporal patterns such as videos. In this paper, we present the Temporal Aware Embedding Network (TAEN) for few-shot action recognition, that learns to represent actions, in a metric space as a trajectory, conveying both short term semantics and longer term connectivity between action parts. We demonstrate the effectiveness of TAEN on two few shot tasks, video classification and temporal action detection and evaluate our method on the Kinetics-400 and on ActivityNet 1.2 few-shot benchmarks. With training of just a few fully connected layers we reach comparable results to prior art on both few shot video classification and temporal detection tasks, while reaching state-of-the-art in certain scenarios.


翻译:新类实体的分类要求收集和说明往往费用高昂的数百或数千个样本。少见的学习建议仅仅用几个例子来学习对新类进行分类。只有少量的研究涉及在片段-时空模式(如视频)上进行微小的学习的挑战。在本文中,我们介绍“时间意识嵌入网络(TAEN) ”, 用于微小的动作识别,该网络学会在以光标空间作为轨迹来代表行动,传达短期语义学和行动部分之间的长期连通性。我们展示了TAEN在两个小任务(视频分类和时间行动探测)上的有效性,并评价了我们关于动因技术-400和活动网(活动网)和1.2个微小基准的方法。只要对几个完全相连的层进行培训,我们就能在某些视频小的拍摄分类和时间探测任务上取得与先前的艺术相似的结果,同时在某些情景中达到了最先进的艺术。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
31+阅读 · 2021年6月12日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
干货 | 为你解读34篇ACL论文
数据派THU
8+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
干货 | 为你解读34篇ACL论文
数据派THU
8+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员