We propose a set of tools to replay wireless network traffic traces, while preserving the privacy of the original traces. Traces are generated by a user- and context-aware trained generative adversarial network (GAN). The replay allows for realistic traces from any number of users and of any trace duration to be produced given contextual parameters like the type of application and the real-time signal strength. We demonstrate the usefulness of the tools in three replay scenarios: Linux- and Android-station experiments and NS3 simulations. We also evaluate the ability of the GAN model to generate traces that retain key statistical properties of the original traces such as feature correlation, statistical moments, and novelty. Our results show that we beat both traditional statistical distribution fitting approaches as well as a state-of-the-art GAN time series generator across these metrics. The ability of our GAN model to generate any number of user traces regardless of the number of users in the original trace also makes our tools more practically applicable compared to previous GAN approaches. Furthermore, we present a use case where our tools were employed in a Wi-Fi research experiment.
翻译:我们提出一套工具,用于重播无线网络交通轨迹,同时保护原始痕迹的隐私。跟踪是由一个用户和背景意识受过训练的基因对抗网络(GAN)生成的。重播允许从任何用户中产生现实的痕迹,并可以产生任何跟踪持续时间,例如应用类型和实时信号强度等环境参数。我们在三个重播情景中展示了这些工具的有用性:Linux和Android站实验和NS3模拟。我们还评估了GAN模型生成保留原始痕迹的关键统计特性的痕迹的能力,例如特征相关性、统计时刻和新颖性。我们的结果显示,我们击败了传统的统计分配匹配方法,以及这些指标之间的最先进的GAN时间序列生成器。我们的GAN模型生成任何用户的痕迹的能力,不论原始追踪用户的数目,也使得我们的工具与以前的GAN方法相比更加实际适用。此外,我们提出了一个使用我们工具进行Wi-Fi研究实验的实例。