Within the field of automated driving, a clear trend in environment perception tends towards more sensors, higher redundancy, and overall increase in computational power. This is mainly driven by the paradigm to perceive the entire environment as best as possible at all times. However, due to the ongoing rise in functional complexity, compromises have to be considered to ensure real-time capabilities of the perception system. In this work, we introduce a concept for situation-aware environment perception to control the resource allocation towards processing relevant areas within the data as well as towards employing only a subset of functional modules for environment perception, if sufficient for the current driving task. Specifically, we propose to evaluate the context of an automated vehicle to derive a multi-layer attention map (MLAM) that defines relevant areas. Using this MLAM, the optimum of active functional modules is dynamically configured and intra-module processing of only relevant data is enforced. We outline the feasibility of application of our concept using real-world data in a straight-forward implementation for our system at hand. While retaining overall functionality, we achieve a reduction of accumulated processing time of 59%.


翻译:在自动化驾驶领域,环境认知的明显趋势趋向于增加传感器、增加冗余和总体计算功率的增加,这主要是由在任何时候都尽可能最好地看待整个环境的范式驱动的,然而,由于功能复杂性不断提高,必须考虑妥协,以确保认知系统的实时能力。在这项工作中,我们引入了一种环境认知概念,以控制在数据内处理相关领域的资源分配,并仅使用一组功能模块来进行环境认知,如果对目前的驱动任务足够的话。具体地说,我们提议评价一个自动工具的背景,以获得多层关注地图(MLAM),界定相关领域。利用这一MLAM,积极功能模块的优化是动态配置的,并且只对相关数据进行模块内部处理。我们概述了在直接实施系统时使用真实世界数据的可行性。我们保留了总体功能,同时将累积的处理时间缩短了59%。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
20+阅读 · 2020年6月8日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
4+阅读 · 2018年11月6日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员