In this work, we propose a simple model that provides permutation invariant maximally predictive prototype generator from a given dataset, which leads to interpretability of the solution and concrete insights to the nature and the solution of a problem. Our aim is to find out prototypes in the feature space to map the collection of instances (i.e. bags) to a distance feature space and simultaneously learn a linear classifier for multiple instance learning (MIL). Our experiments on classical MIL benchmark datasets demonstrate that proposed framework is an accurate and efficient classifier compared to the existing approaches.


翻译:在这项工作中,我们提出了一个简单模型,从一个特定数据集中提供变异性、最大预测性原型生成器,从而可以解释解决办法,并具体洞察问题的性质和解决办法。我们的目标是在地物空间中找到原型,将实例(如袋)的收集图绘制成一个远距离地物空间,同时学习线性分类,供多个实例学习(MIL)。我们在传统的MIL基准数据集方面的实验表明,与现有方法相比,拟议的框架是一个准确有效的分类器。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
4+阅读 · 2019年11月25日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月8日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
4+阅读 · 2019年11月25日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月8日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员