We address the inverse Frobenius--Perron problem: given a prescribed target distribution $\rho$, find a deterministic map $M$ such that iterations of $M$ tend to $\rho$ in distribution. We show that all solutions may be written in terms of a factorization that combines the forward and inverse Rosenblatt transformations with a uniform map, that is, a map under which the uniform distribution on the $d$-dimensional hypercube as invariant. Indeed, every solution is equivalent to the choice of a uniform map. We motivate this factorization via $1$-dimensional examples, and then use the factorization to present solutions in $1$ and $2$ dimensions induced by a range of uniform maps.
翻译:我们处理反弗罗贝纽斯-波伦问题:根据一个指定的目标分布值$rho$,找到一个确定性的地图$M$,这样一来,以美元为单位的迭代往往以美元为单位。我们显示,所有解决方案都可以用一个系数化来写成,将前方和反方的罗森布拉特变形与统一的地图(即一张将美元-维超立方的均匀分布作为非变量的地图)结合起来。事实上,所有解决方案都相当于一个统一的地图的选择。我们通过一美元维示例来激励这一乘数化,然后用系数化来以一美元和一美元表示解决方案,再用一幅统一地图引出一美元维。