Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data. Exiting GNN architectures usually adopt simple pooling operations (e.g., sum, average, max) when aggregating messages from a local neighborhood for updating node representation or pooling node representations from the entire graph to compute the graph representation. Though simple and effective, these linear operations do not model high-order non-linear interactions among nodes. We propose the Tensorized Graph Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions. tGNN leverages the symmetric CP decomposition to efficiently parameterize permutation-invariant multilinear maps for modeling node interactions. Theoretical and empirical analysis on both node and graph classification tasks show the superiority of tGNN over competitive baselines. In particular, tGNN achieves state-of-the-art results on two OGB node classification datasets and one OGB graph classification dataset.
翻译:图形神经网络(GNNs)因其在模拟各种图形结构数据方面的有效性和灵活性而正在引起越来越多的关注。退出GNN结构的架构通常采用简单的集合操作(例如,总、平均、最大),当将当地社区的信息汇总起来更新节点代表或将整个图中的节点代表集合起来以计算图形代表时,这些线性操作虽然简单而有效,但并不模拟节点之间的高阶非线性互动。我们提议Tensorized图形神经网络(tGNN),这是一个高度直观的GNN结构,依赖高压分解为高阶非线性节点互动模式。tGNN利用对称式的CP分解配置来高效参数化调控点互动的多线性地图。关于节点和图形分类任务的理论和实验分析显示tGNNe优于竞争性基线。特别是,TGNNN在两个OGB节点数据分类和一个OGB图形数据分类中取得了最新结果。