For many functions of matrices $f(A)$, it is known that their entries exhibit a rapid -- often exponential or even superexponential -- decay away from the sparsity pattern of the matrix $A$. In this paper we specifically focus on the class of Bernstein functions, which contains the fractional powers $A^\alpha$, $\alpha \in (0,1)$ as an important special case, and derive new decay bounds by exploiting known results for the matrix exponential in conjunction with the L\'evy--Khintchine integral representation. As a particular special case, we find a result concerning the power law decay of the strength of connection in nonlocal network dynamics described by the fractional graph Laplacian, which improves upon known results from the literature by doubling the exponent in the power law.


翻译:对于矩阵($f(A))的许多功能,众所周知,它们的条目在与矩阵($A)的宽度模式脱节后迅速 -- -- 往往是指数化的,甚至是超穷的 -- -- 衰减。在本文中,我们特别侧重于伯恩斯坦功能的类别,它包含分数功率($A ⁇ alpha$,$alpha $ ein (0,1美元))作为一个重要的特例,并且通过利用与L\'evy-Khintchine(L\'evy-Khintchine-Khintchine)整体代表的已知指数结果来产生新的衰减界限。作为一个特别的特例,我们发现分数图Laplacian所描述的非本地网络动态连接强度的权力法衰减的结果,它通过将权力法的推力翻倍而改进了文献的已知结果。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
9+阅读 · 2021年6月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员