We propose efficient and low complexity multiuser detection (MUD) algorithms for Gaussian multiple access channel (G-MAC) for short-packet transmission in massive machine type communications. We formulate the problem of MUD for the G- MAC as a compressive sensing problem with virtual sparsity induced by one-hot vector transmission of devices in code domain. Our proposed MUD algorithms rely on block and non-block approximate message passing (AMP) for soft decoding of the transmitted packets. Taking into account the induced sparsity leads to a known prior distribution on the transmit vector; hence, the optimal minimum mean squared error (MMSE) denoiser can be employed. We consider both separable and non-separable MMSE denoisers for AMP soft decoding. The effectiveness of the proposed MUD algorithms for a large number of devices is supported by simulation results. For packets of 8 information bits, while the state of the art AMP with soft-threshold denoising achieves 5/100 of the converse bound at Eb/N0 = 4 dB, the proposed algorithms reach 4/9 and 1/2 of the converse bound.
翻译:我们为高西亚多式接入频道(G-MAC)提出高效和低复杂多用户检测(MUD)算法,用于大规模机器式通信的短包装传输。我们为G-MAC提出MUD问题,作为代码域内设备单热矢量传输引起的虚拟宽度的压缩遥感问题。我们提议的MUD算法依靠块和非块近似电文传递(AMP)来软解码传输包包。考虑到诱发的孔隙导致预先在传输矢量上进行已知的分布;因此,可以采用最佳的最小平均平方差(MMSE)除尘器(MMMSE)的最佳平均值差(MMMSE)问题。我们认为,对AMP软解码的分离和不可分离的 MMSE denoisers都是一个压缩的。我们提议的MUD算法对大量设备的有效性得到模拟结果的支持。对于8个信息比特的包而言,而具有软高度解码的艺术AMP状态使传输矢量达到Eb/N0 = 4 d/2的反边,提议的算算法则达到1/9。