Caused by the difference of data distributions, intra-domain gap and inter-domain gap are widely present in image processing tasks. In the field of image dehazing, certain previous works have paid attention to the inter-domain gap between the synthetic domain and the real domain. However, those methods only establish the connection from the source domain to the target domain without taking into account the large distribution shift within the target domain (intra-domain gap). In this work, we propose a Two-Step Dehazing Network (TSDN) with an intra-domain adaptation and a constrained inter-domain adaptation. First, we subdivide the distributions within the synthetic domain into subsets and mine the optimal subset (easy samples) by loss-based supervision. To alleviate the intra-domain gap of the synthetic domain, we propose an intra-domain adaptation to align distributions of other subsets to the optimal subset by adversarial learning. Finally, we conduct the constrained inter-domain adaptation from the real domain to the optimal subset of the synthetic domain, alleviating the domain shift between domains as well as the distribution shift within the real domain. Extensive experimental results demonstrate that our framework performs favorably against the state-of-the-art algorithms both on the synthetic datasets and the real datasets.


翻译:由数据分布差异、内部差距和内部差距造成的数据分布差异在图像处理任务中广泛存在。在图像解密领域,某些先前的作品注意到合成域与实际域之间的部间差距,然而,这些方法只建立了从源域到目标域的连接,而没有考虑到目标域内部的大规模分布变化(内部差距)。在这项工作中,我们提议建立一个双层拆解网络(TSDN),具有内部适应和受限制的部间适应。首先,我们将合成域内的部间分布转换为子集,并通过基于损失的监督将最佳子集(简易样本)归为矿藏。为缩小合成域内部与目标域之间的内部差距,我们建议进行内部调整,以便将其他子组的分布与通过对抗性学习的最佳子集相协调。最后,我们从实际域到合成域的最佳组进行有限的内部调整,将域域间域间域间变化减缓为区域间转移,作为在实际域内对照实际域内真实域内真实数据组合的分布变化。我们建议进行内部的实验性实验结果,在实际域内进行实际数据转换。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
110+阅读 · 2020年3月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年10月23日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
110+阅读 · 2020年3月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员