Copy-Paste has proven to be a very effective data augmentation for instance segmentation which can improve the generalization of the model. We used a task-specific Copy-Paste data augmentation method to achieve good performance on the instance segmentation track of the 2nd VIPriors workshop challenge. We also applied additional data augmentation techniques including RandAugment and GridMask. Our segmentation model is the HTC detector on the CBSwin-B with CBFPN with some tweaks. This model was trained at the multi-scale mode by a random sampler on the 6x schedule and tested at the single-scale mode. By combining these techniques, we achieved 0.398 AP@0.50:0.95 with the validation set and 0.433 AP@0.50:0.95 with the test set. Finally, we reached 0.477 AP@0.50:0.95 with the test set by adding the validation set to the training data. Source code is available at https://github.com/jahongir7174/VIP2021.
翻译:Copy-Paste 已证明是一个非常有效的数据增强功能, 例如, 能够改善模型一般化的分区化 。 我们使用特定任务化的 Copy-Paste 数据增强方法, 在第二个VIPriors 讲习班挑战的分解轨道上取得良好表现。 我们还应用了额外的数据增强技术, 包括 RandAugment 和 GridMask 。 我们的分解模型是 CBSwin- B和 CBFBPPN 上的 HTC 探测器, 并带有一些小节点。 这个模型由6x 时间表的随机取样员在多尺度模式上培训, 并在单一尺度模式上测试 。 通过将这些技术结合, 我们取得了0. 398 AP@0. 50: 0.95 和 0. 433 AP@0. 50: 0.95 和 测试集, 我们达到了 0. 477 AP@0. 50: 0.95 测试集, 将验证集添加到培训数据中。 源码可在 https://github.com/jaong71/ VIP2021 上查阅 。