Copy-Paste has proven to be a very effective data augmentation for instance segmentation which can improve the generalization of the model. We used a task-specific Copy-Paste data augmentation method to achieve good performance on the instance segmentation track of the 2nd VIPriors workshop challenge. We also applied additional data augmentation techniques including RandAugment and GridMask. Our segmentation model is the HTC detector on the CBSwin-B with CBFPN with some tweaks. This model was trained at the multi-scale mode by a random sampler on the 6x schedule and tested at the single-scale mode. By combining these techniques, we achieved 0.398 AP@0.50:0.95 with the validation set and 0.433 AP@0.50:0.95 with the test set. Finally, we reached 0.477 AP@0.50:0.95 with the test set by adding the validation set to the training data. Source code is available at https://github.com/jahongir7174/VIP2021.


翻译:Copy-Paste 已证明是一个非常有效的数据增强功能, 例如, 能够改善模型一般化的分区化 。 我们使用特定任务化的 Copy-Paste 数据增强方法, 在第二个VIPriors 讲习班挑战的分解轨道上取得良好表现。 我们还应用了额外的数据增强技术, 包括 RandAugment 和 GridMask 。 我们的分解模型是 CBSwin- B和 CBFBPPN 上的 HTC 探测器, 并带有一些小节点。 这个模型由6x 时间表的随机取样员在多尺度模式上培训, 并在单一尺度模式上测试 。 通过将这些技术结合, 我们取得了0. 398 AP@0. 50: 0.95 和 0. 433 AP@0. 50: 0.95 和 测试集, 我们达到了 0. 477 AP@0. 50: 0.95 测试集, 将验证集添加到培训数据中。 源码可在 https://github.com/jaong71/ VIP2021 上查阅 。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
专知会员服务
42+阅读 · 2021年8月20日
专知会员服务
27+阅读 · 2021年7月3日
如何撰写好你的博士论文?CMU-Priya博士这30页ppt为你指点
专知会员服务
55+阅读 · 2020年10月30日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
7+阅读 · 2021年11月11日
Arxiv
8+阅读 · 2021年6月1日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员