We present a two-level branch-and-bound (BB) algorithm to compute the optimal gripper pose that maximizes a grasp metric in a restricted search space. Our method can take the gripper's kinematics feasibility into consideration to ensure that a given gripper can reach the set of grasp points without collisions or predict infeasibility with finite-time termination when no pose exists for a given set of grasp points. Our main technical contribution is a novel mixed-integer conic programming (MICP) formulation for the inverse kinematics of the gripper that uses a small number of binary variables and tightened constraints, which can be efficiently solved via a low-level BB algorithm. Our experiments show that optimal gripper poses for various target objects can be computed taking 20-180 minutes of computation on a desktop machine and the computed grasp quality, in terms of the Q1 metric, is better than those generated using sampling-based planners.
翻译:我们提出了一个两级的分支和约束(BB)算法,以计算最佳握手姿势,在限制的搜索空间内,最大限度地实现掌握度量。我们的方法可以考虑到抓手运动学的可行性,以确保一个特定的握手能够在不发生碰撞的情况下到达一套抓握点,或者预测在对一套特定抓握点不存在任何表态的情况下,在有限时间终止时不可行。我们的主要技术贡献是对握手的反动动动脉配制一种新颖的混合整数共线编程(MICP)配方,它使用少量的二进制变量和收紧的限制,可以通过低层次的 BB 算法有效解决。我们的实验表明,对不同目标物体的最佳握手姿势可以通过台式机器进行20-180分钟的计算来计算,而按Q1指标计算,其计算抓取质量比使用取样规划者生成的要好。