We show that the reciprocal maximal likelihood degree (rmld) of a diagonal linear concentration model $\mathcal L \subseteq \mathbb{C}^n$ of dimension $r$ is equal to $(-2)^r\chi_M( \textstyle\frac{1}{2})$, where $\chi_M$ is the characteristic polynomial of the matroid $M$ associated to $\mathcal L$. In particular, this establishes the polynomiality of the rmld for general diagonal linear concentration models, positively answering a question of Sturmfels, Timme, and Zwiernik.


翻译:我们显示,对角线性浓度模型的对等最大可能性度(rmld) $\ mathcal L\ subseteq \ mathbb{C\\ un specion $r$) 等于 $(-2)r\\ chi_M (\ textstystem\ frac{1\ ⁇ 2}) 美元, 其中 $\ chi_ M 美元是与 $\ mathcal L$ 相关的超圆形机器人的特性。 特别是, 这为一般对角线性浓度模型确定了 rmld的多元性, 正面回答了 Sturfels、 Timme 和 Zwiernik 的问题 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员