We show that supervised neural information retrieval (IR) models are prone to learning sparse attention patterns over passage tokens, which can result in key phrases including named entities receiving low attention weights, eventually leading to model under-performance. Using a novel targeted synthetic data generation method that identifies poorly attended entities and conditions the generation episodes on those, we teach neural IR to attend more uniformly and robustly to all entities in a given passage. On two public IR benchmarks, we empirically show that the proposed method helps improve both the model's attention patterns and retrieval performance, including in zero-shot settings.
翻译:我们发现,监督神经信息检索模型很容易在路标上学习微弱的注意力模式,这可能导致关键词句,包括被点名的实体的注意力重量低,最终导致表现不佳的模式。 我们使用一种新的有针对性的合成数据生成方法,确定参与率低的实体及其生成过程的条件,我们教神经IR在一个特定段落中更加统一和有力地关注所有实体。 在两个公开的IR基准上,我们从经验上表明,拟议方法有助于改善模型的注意力模式和检索性能,包括在零光环境中。