A confidence sequence (CS) is a sequence of confidence intervals that is valid at arbitrary data-dependent stopping times. These are useful in applications like A/B testing, multi-armed bandits, off-policy evaluation, election auditing, etc. We present three approaches to constructing a confidence sequence for the population mean, under the minimal assumption that only an upper bound $\sigma^2$ on the variance is known. While previous works rely on light-tail assumptions like boundedness or subGaussianity (under which all moments of a distribution exist), the confidence sequences in our work are able to handle data from a wide range of heavy-tailed distributions. The best among our three methods -- the Catoni-style confidence sequence -- performs remarkably well in practice, essentially matching the state-of-the-art methods for $\sigma^2$-subGaussian data, and provably attains the $\sqrt{\log \log t/t}$ lower bound due to the law of the iterated logarithm. Our findings have important implications for sequential experimentation with unbounded observations, since the $\sigma^2$-bounded-variance assumption is more realistic and easier to verify than $\sigma^2$-subGaussianity (which implies the former). We also extend our methods to data with infinite variance, but having $p \in (1,2)$ moments.
翻译:信任序列( CS) 是任意数据依赖性停止时有效的信任间隔序列。 这对于A/ B测试、 多武装土匪、 多武装土匪、 退出政策评估、 选举审计等应用很有用。 我们提出三种方法来为民众构建信任序列, 前提是对差异只知道一美元=2美元=2美元=2美元=2美元=2美元; 虽然先前的工程依赖于像约束性或亚银度这样的轻尾假设( 在这种假设下,所有分配时刻都存在), 我们工作中的信任序列能够处理来自一系列繁琐分布的数据。 我们三种方法中的最佳方法 -- -- Catoni 式的信任序列 -- -- 在实践中表现得非常好, 基本上符合美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元; 可以肯定地达到美元=qsqirtail-tail $=2美元=2美元=xxxxxxxxxlalalal rolal roma) 。 我们的发现对连续实验有着重要的影响, 我们的假设是比G_2美元=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx