Photoplethysmography (PPG) signal comprises physiological information related to cardiorespiratory health. However, while recording, these PPG signals are easily corrupted by motion artifacts and body movements, leading to noise enriched, poor quality signals. Therefore ensuring high-quality signals is necessary to extract cardiorespiratory information accurately. Although there exists several rule-based and Machine-Learning (ML) - based approaches for PPG signal quality estimation, those algorithms' efficacy is questionable. Thus, this work proposes a lightweight CNN architecture for signal quality assessment employing a novel Quantum pattern recognition (QPR) technique. The proposed algorithm is validated on manually annotated data obtained from the University of Queensland database. A total of 28366, 5s signal segments are preprocessed and transformed into image files of 20 x 500 pixels. The image files are treated as an input to the 2D CNN architecture. The developed model classifies the PPG signal as `good' or `bad' with an accuracy of 98.3% with 99.3% sensitivity, 94.5% specificity and 98.9% F1-score. Finally, the performance of the proposed framework is validated against the noisy `Welltory app' collected PPG database. Even in a noisy environment, the proposed architecture proved its competence. Experimental analysis concludes that a slim architecture along with a novel Spatio-temporal pattern recognition technique improve the system's performance. Hence, the proposed approach can be useful to classify good and bad PPG signals for a resource-constrained wearable implementation.


翻译:光膜扫描(PPG) 信号包含与心血管呼吸健康有关的生理信息。 然而,在记录时,这些PPG信号很容易被运动工艺品和身体运动破坏,导致噪音丰富,质量信号差。因此,确保高质量的信号对于准确提取心血管呼吸信息是必要的。虽然在PPG信号质量估计方面存在着若干基于规则和机器学习(ML)的基于规则的方法,但这些算法的效力令人怀疑。因此,这项工作建议使用新型量子体模式识别(QPR)技术,为信号质量评估建立一个轻巧的CNN结构。拟议的算法在从昆士兰大学数据库获得的附加数据上得到验证。总计28366,5个信号部分被预先处理,并转换成20x500平方位的图像文件。图像文件被视为对2DCNNC结构的投入。开发模型将PPG信号和“可使用性能方法”归为“可使用性能”或“坏”的测试,精确度为98.3%的量度敏感度、94.5%的特性和98.9 %F1- 的计算法质数据,最后,用提议的硬质的硬质系统的硬质分析,用SLIF1 的计算,用一个拟议的硬质结构,用一个拟议的硬质结构的计算,用一个拟议的硬质结构,可以采集的计算。 。 的计算,用一个拟议的硬质化分析,用一个拟议的硬质结构的计算。 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员