Building on previous work by Andr\'e Platzer, we present a formal language for Stochastic Differential Dynamic Logic, and define its semantics, axioms and inference rules. Compared to the previous effort, our account of the Stochastic Differential Dynamic Logic follows closer to and is more compatible with the traditional account of the regular Differential Dynamic Logic. We resolve an issue with the well-definedness of the original work's semantics, while showing how to make the logic more expressive by incorporating nondeterministic choice, definite descriptions and differential terms. Definite descriptions necessitate using a three-valued truth semantics. We also give the first Uniform Substitution calculus for Stochastic Differential Dynamic Logic, making it more practical to implement in proof assistants.
翻译:在Andr\'e Platzer先前工作的基础上,我们用一种正式的语言来描述“细小差异动态逻辑”,并定义其语义、正弦和推理规则。与先前的努力相比,我们关于“细小差异动态逻辑”的叙述更接近并且更符合常规的“细小差异动态逻辑”的传统描述。我们用原始工作语义的清晰定义来解决一个问题,同时展示如何通过纳入非定义选择、明确描述和差别术语来使逻辑更清晰地表达。对词义的描述需要使用三种有价值的真理语义。我们还为“细小差异动态逻辑”提供了第一个统一的替代计算方法,使得在证据助理中实施更为实用。