We present a new game semantics for Martin-L\"of type theory (MLTT), our aim is to give a mathematical and intensional explanation of MLTT. Specifically, we propose a category with families of a novel variant of games, which induces a surjective and injective (when Id-types are excluded) interpretation of the intensional variant of MLTT equipped with unit-, empty-, N-, dependent product, dependent sum and Id-types as well as the cumulative hierarchy of universes for the first time in the literature (as far as we are aware), though the surjectivity is accomplished merely by an inductive definition of a certain class of games and strategies. Our games generalize the existing notion of games, and achieve an interpretation of dependent types and the hierarchy of universes in an intuitive yet mathematically precise manner, our strategies can be seen as algorithms underlying programs (or proofs) in MLTT. A more fine-grained interpretation of Id-types is left as future work.
翻译:我们为马丁-L\"类型理论(MLTT)提出了一个新的游戏语义,我们的目标是对MLTT作一个数学和加固的解释。具体地说,我们建议了一个类别,由各种新游戏的家族组成一个新颖的游戏变种,这种变种(在排除Id类型时)对MLTT具有单位、空的、N的、依赖的产品、依赖性的产品、依赖性总和和和和Id类型的强化变种,以及文献中首次(据我们所知)的宇宙累积等级,尽管这种推论仅仅是通过对某类游戏和战略的感性定义而实现的。我们的游戏将现有的游戏概念概括化,并以直观的、数学精确的方式对附属类型和宇宙的等级作出解释,我们的战略可以被视为MLTTT中程序(或证据)的基础算法。对Id型的更精细的解释留作未来的工作。