Existing rigorous convergence guarantees for the Hamiltonian Monte Carlo (HMC) algorithm use Gaussian auxiliary momentum variables, which are crucially symmetrically distributed. We present a novel convergence analysis for HMC utilizing new analytic and probabilistic arguments. The convergence is rigorously established under significantly weaker conditions, which among others allow for general auxiliary distributions. In our framework, we show that plain HMC with asymmetrical momentum distributions breaks a key self-adjointness requirement. We propose a modified version that we call the Alternating Direction HMC (AD-HMC). Sufficient conditions are established under which AD-HMC exhibits geometric convergence in Wasserstein distance. Numerical experiments suggest that AD-HMC can show improved performance over HMC with Gaussian auxiliaries.
翻译:对汉密尔顿蒙特卡洛(HMC)算法的现有严格趋同保证使用Gaussian辅助动力变量,这些变量分布极不对称。我们利用新的分析和概率论,对HMC提出新的趋同分析分析分析。这种趋同在非常弱的条件下得到严格确立,这些条件包括一般辅助分布。在我们的框架内,我们表明,具有不对称势头分布的普通HMC打破了关键的自我联合性要求。我们提议了一个修改版本,我们称之为“交替方向HMC(AD-HMC) ” 。根据充分的条件,AD-HMC展览在瓦瑟斯坦距离上的几何趋一致。数字实验表明,AD-HMC可以显示与高西亚辅助性相比HMC的性能提高。