Sampling from an unnormalized probability distribution is a fundamental problem in machine learning with applications including Bayesian modeling, latent factor inference, and energy-based model training. After decades of research, variations of MCMC remain the default approach to sampling despite slow convergence. Auxiliary neural models can learn to speed up MCMC, but the overhead for training the extra model can be prohibitive. We propose a fundamentally different approach to this problem via a new Hamiltonian dynamics with a non-Newtonian momentum. In contrast to MCMC approaches like Hamiltonian Monte Carlo, no stochastic step is required. Instead, the proposed deterministic dynamics in an extended state space exactly sample the target distribution, specified by an energy function, under an assumption of ergodicity. Alternatively, the dynamics can be interpreted as a normalizing flow that samples a specified energy model without training. The proposed Energy Sampling Hamiltonian (ESH) dynamics have a simple form that can be solved with existing ODE solvers, but we derive a specialized solver that exhibits much better performance. ESH dynamics converge faster than their MCMC competitors enabling faster, more stable training of neural network energy models.


翻译:从未实现的概率分布中取样,是机器学习包括贝耶斯模型模型、潜在因素推断和能源模型培训在内的应用的根本性问题。经过数十年的研究后,MCMC的变异仍然是抽样的默认方法,尽管速度趋同缓慢。辅助神经模型可以学会加速MCMC,但额外模型的培训管理费用可能令人望而却步。我们提议通过一个新的汉密尔顿动力和非纽顿动力的新的汉密尔顿动力来从根本上改变这一问题。与汉密尔顿蒙特卡洛这样的MCMC方法相比,不需要采取软体步骤。相反,在扩展的状态空间中,拟议的确定性动态确切地对由能源函数指定的目标分布进行抽样。在一种假设中,一种能源函数的假设下,这种变异性可以被解释为一种正常的流,在没有培训的情况下对特定能源模型进行抽样。拟议的能源采集汉密尔密尔顿(ESH)动态有一个简单的形式,可以与现有的内存解解剂一起解决,但我们可以找到一个表现更好的专门解答器。ESH的动态比它们的MCMC竞争者能够更快、更稳定地进行神经网络模型的培训。

0
下载
关闭预览

相关内容

车联网白皮书,44页pdf
专知会员服务
80+阅读 · 2022年1月3日
专知会员服务
26+阅读 · 2021年4月2日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年2月22日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员