Detecting road traffic signs and accurately determining how they can affect the driver's future actions is a critical task for safe autonomous driving systems. However, various traffic signs in a driving scene have an unequal impact on the driver's decisions, making detecting the salient traffic signs a more important task. Our research addresses this issue, constructing a traffic sign detection model which emphasizes performance on salient signs, or signs that influence the decisions of a driver. We define a traffic sign salience property and use it to construct the LAVA Salient Signs Dataset, the first traffic sign dataset that includes an annotated salience property. Next, we use a custom salience loss function, Salience-Sensitive Focal Loss, to train a Deformable DETR object detection model in order to emphasize stronger performance on salient signs. Results show that a model trained with Salience-Sensitive Focal Loss outperforms a model trained without, with regards to recall of both salient signs and all signs combined. Further, the performance margin on salient signs compared to all signs is largest for the model trained with Salience-Sensitive Focal Loss.


翻译:检测道路交通标志和准确确定它们如何影响驾驶员的未来行动,是安全自主驾驶系统的关键任务。然而,驾驶场上的各种交通标志对驾驶员的决定产生不同的影响,使发现突出交通标志成为更重要的任务。我们的研究解决这一问题,建立了一个交通标志检测模型,强调突出标志的性能,或影响驾驶员决定的标志。我们定义了交通标志特征属性,并用它来构建第一个交通标志数据集LAVA 显性信号数据集,其中包括一个突出属性。接下来,我们使用定制显著损失功能,即感敏度协调损失,来培训一个可变式的DETR物体检测模型,以强调在突出标志上更强的性能。结果显示,一个经过精敏度焦点损失训练的模型比一个经过培训的模型要强,而没有回顾突出标志和所有标志的组合。此外,与所有标志相比,与所有标志相比,突出标志的性能比值是用耐敏度聚焦焦点损失所训练模型的最大。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月8日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员