Consider sensitivity analysis for estimating average treatment effects under unmeasured confounding, assumed to satisfy a marginal sensitivity model. At the population level, we provide new representations for the sharp population bounds and doubly robust estimating functions, recently derived by Dorn, Guo, and Kallus. We also derive new, relaxed population bounds, depending on weighted linear outcome quantile regression. At the sample level, we develop new methods and theory for obtaining not only doubly robust point estimators for the relaxed population bounds with respect to misspecification of a propensity score model or an outcome mean regression model, but also model-assisted confidence intervals which are valid if the propensity score model is correctly specified, but the outcome quantile and mean regression models may be misspecified. The relaxed population bounds reduce to the sharp bounds if outcome quantile regression is correctly specified. For a linear outcome mean regression model, the confidence intervals are also doubly robust. Our methods involve regularized calibrated estimation, with Lasso penalties but carefully chosen loss functions, for fitting propensity score and outcome mean and quantile regression models. We present a simulation study and an empirical application to an observational study on the effects of right heart catheterization.
翻译:在人口层面,我们为急剧的人口界限和双重强势估算功能提供了新的代表,这些功能最近由Dorn、Guo和Kallus等公司得出。我们还根据加权线性结果四分位回归值得出了新的、宽松的人口界限。在样本层面,我们开发了新的方法和理论,不仅用于在偏向性分数模型或结果平均回归模型的错误区分方面,为放松的人口界限获取双倍强点估计器。在人口层面,我们为偏向性分数模型或结果平均回归模型的错误划分,而且为偏向性分数模型和结果偏向性回归模型提供新的代表,而模型辅助的信任间隔是有效的,但结果分数和平均回归模型可能被错误界定。在结果微分回归值正确定义的情况下,放松的人口界限会缩小到锐性界限。对于线性结果表示回归模型,信任间隔也具有加倍的强度。我们的方法涉及定期调整的估算,有激光惩罚,但仔细选择的损失函数,以适应偏向性分数和结果平均值和四分位回归模型。我们进行了模拟研究,对右心的观察效果进行了模拟研究,并进行了实验应用。