Cables are ubiquitous in many settings and it is often useful to untangle them. However, cables are prone to self-occlusions and knots, making them difficult to perceive and manipulate. The challenge increases with cable length: long cables require more complex slack management to facilitate observability and reachability. In this paper, we focus on autonomously untangling cables up to 3 meters in length using a bilateral robot. We develop RGBD perception and motion primitives to efficiently untangle long cables and novel gripper jaws specialized for this task. We present Sliding and Grasping for Tangle Manipulation (SGTM), an algorithm that composes these primitives to iteratively untangle cables with success rates of 67% on isolated overhand and figure-eight knots and 50% on more complex configurations. Supplementary material, visualizations, and videos can be found at https://sites.google.com/view/rss-2022-untangling/home.
翻译:电缆在许多环境中是无处不在的, 通常可以解开它们。 但是, 电缆很容易被自我隔离和结结, 难以感知和操作。 挑战随着电缆长度而增加: 长的电缆需要更复杂的松动管理, 以便于易用和可及性。 在本文中, 我们用一个双边机器人, 专注于自动解开长度高达3米的电缆。 我们开发了 RGBD 感知, 并移动原始设备, 以便有效地解开长长的电缆, 以及专用于此任务的新颖的抓掌 。 我们展示了卷起的操纵( SGTM ), 这是一种将这些原始设备拼凑成迭交解动的电缆的算法, 其成功率是67% 的单手和图八节, 50%的配置更为复杂。 补充材料、 视觉化和视频可以在 https://sites.gogle. com/ view/ rs-2022- untangling/ home 上找到 。