Cables are commonplace in homes, hospitals, and industrial warehouses and are prone to tangling. This paper extends prior work on autonomously untangling long cables by introducing novel uncertainty quantification metrics and actions that interact with the cable to reduce perception uncertainty. We present Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0), a system that autonomously untangles cables approximately 3 meters in length with a bilateral robot using estimates of uncertainty at each step to inform actions. By interactively reducing uncertainty, Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0) reduces the number of state-resetting moves it must take, significantly speeding up run-time. Experiments suggest that SGTM 2.0 can achieve 83% untangling success on cables with 1 or 2 overhand and figure-8 knots, and 70% termination detection success across these configurations, outperforming SGTM 1.0 by 43% in untangling accuracy and 200% in full rollout speed. Supplementary material, visualizations, and videos can be found at sites.google.com/view/sgtm2.
翻译:电缆在家庭、 医院和工业仓库中很常见, 并且容易切换。 本文通过引入新的不确定性量化指标以及与电缆互动以减少感知不确定性的动作, 扩展了自动解动长电缆的先前工作。 我们展示了Tangle Manipul 2.0 (SGTM 2.0 ) 的滑动和切分系统, 这个系统与双边机器人自动解开电缆大约3米长, 使用每步的不确定性估计来告知行动。 通过交互减少不确定性, 拖动和切除 2.0 (SGTM 2. 0 ), 减少了它必须采取的州立动作数量, 大大加快运行时间。 实验显示, SGTM 2. 0 可以在这些配置中以1或2个过头和图示8节的方式实现83%的解动成功率, 超过SGTM 1.0 0. 0.3%, 准确度比不切速度高43%, 全面推出速度200% 。 补充材料、 可视化和视频可以在网站找到。 goglegle. com/ / view/ sgtm2 。