We develop a robust matrix-free, communication avoiding parallel, high-degree polynomial preconditioner for the Conjugate Gradient method for large and sparse symmetric positive definite linear systems. We discuss the selection of a scaling parameter aimed at avoiding unwanted clustering of eigenvalues of the preconditioned matrices at the extrema of the spectrum. We use this preconditioned framework to solve a $3 \times 3$ block system arising in the simulation of fluid flow in large-size discrete fractured networks. We apply our polynomial preconditioner to a suitable Schur complement related with this system, which can not be explicitly computed because of its size and density. Numerical results confirm the excellent properties of the proposed preconditioner up to very high polynomial degrees. The parallel implementation achieves satisfactory scalability by taking advantage from the reduced number of scalar products and hence of global communications.
翻译:我们为大型和稀疏的对称正直线系统开发一个强大的无基体、避免平行、高度多元度梯度梯度梯度梯度法的强大无基体交流、避免平行、高度多元性先决条件; 我们讨论选择一个规模参数,旨在避免在光谱外缘不必要地将先决条件矩阵的树脂值组合成顶部; 我们利用这个先决条件框架来解决大型离散断裂网络中液流模拟过程中产生的3美元乘以3美元的区块系统; 我们将我们的多元性预设物应用于与这个系统有关的适当的舒尔补充,由于它的大小和密度,无法明确计算。 数字结果证实了拟议前提的优异性, 直至非常高的多元度; 平行实施通过利用数量减少的标度产品和全球通信, 实现了令人满意的可扩展性。