{\em Personalized PageRank (PPR)} stands as a fundamental proximity measure in graph mining. Since computing an exact SSPPR query answer is prohibitive, most existing solutions turn to approximate queries with guarantees. The state-of-the-art solutions for approximate SSPPR queries are index-based and mainly focus on static graphs, while real-world graphs are usually dynamically changing. However, existing index-update schemes can not achieve a sub-linear update time. Motivated by this, we present an efficient indexing scheme to maintain indexed random walks in expected $O(1)$ time after each graph update. To reduce the space consumption, we further propose a new sampling scheme to remove the auxiliary data structure for vertices while still supporting $O(1)$ index update cost on evolving graphs. Extensive experiments show that our update scheme achieves orders of magnitude speed-up on update performance over existing index-based dynamic schemes without sacrificing the query efficiency.
翻译:{em 个性化 PageRank (PPR)} 是图形采矿中一个基本的近距离测量标准。 由于计算精确的 SSPPR 查询答案是令人望而却步的, 大多数现有解决方案都转向有保证的近似查询。 用于近似 SSPPR 查询的最先进的解决方案以指数为基础, 主要集中在静态图上, 而真实世界图通常变化很大。 但是, 现有的指数更新计划无法实现子线性更新时间。 受此驱动, 我们提出了一个高效的指数化计划, 以便在每张图形更新后以预期的$O(1) 时间维持指数化随机行走。 为了减少空间消耗, 我们进一步提议一个新的抽样计划, 来删除脊椎的辅助数据结构, 同时支持不断演变的图表的$O(1) 指数更新成本。 广泛的实验显示, 我们的更新计划在更新现有指数性动态计划的同时, 在不牺牲查询效率的情况下, 在更新现有基于指数的动态计划的业绩上达到一定的速率。