In fully Bayesian analyses, prior distributions are specified before observing data. Prior elicitation methods transfigure prior information into quantifiable prior distributions. Recently, methods that leverage copulas have been proposed to accommodate more flexible dependence structures when eliciting multivariate priors. We prove that under broad conditions, the posterior cannot retain many of these flexible prior dependence structures in large-sample settings. We emphasize the impact of this result by overviewing several objectives for prior specification to help practitioners select prior dependence structures that align with their objectives for posterior analysis. Because correctly specifying the dependence structure a priori can be difficult, we consider how the choice of prior copula impacts the posterior distribution in terms of asymptotic convergence of the posterior mode. Our resulting recommendations streamline the prior elicitation process.
翻译:暂无翻译