We study Byzantine collaborative learning, where $n$ nodes seek to collectively learn from each others' local data. The data distribution may vary from one node to another. No node is trusted, and $f < n$ nodes can behave arbitrarily. We prove that collaborative learning is equivalent to a new form of agreement, which we call averaging agreement. In this problem, nodes start each with an initial vector and seek to approximately agree on a common vector, which is close to the average of honest nodes' initial vectors. We present two asynchronous solutions to averaging agreement, each we prove optimal according to some dimension. The first, based on the minimum-diameter averaging, requires $ n \geq 6f+1$, but achieves asymptotically the best-possible averaging constant up to a multiplicative constant. The second, based on reliable broadcast and coordinate-wise trimmed mean, achieves optimal Byzantine resilience, i.e., $n \geq 3f+1$. Each of these algorithms induces an optimal Byzantine collaborative learning protocol. In particular, our equivalence yields new impossibility theorems on what any collaborative learning algorithm can achieve in adversarial and heterogeneous environments.


翻译:我们研究拜占庭合作学习, 在那里, 美元节点寻求从彼此的本地数据中集体学习。 数据分布可能因节点而不同。 诺节点是信任的, 美元 < n美元节点可以任意行事。 我们证明合作学习相当于一种新形式的协议, 我们称之为平均协议。 在这个问题中, 节点从最初的矢量开始, 并寻求大致商定一个共同矢量, 接近于诚实节点初始矢量的平均值。 我们为平均协议提出了两种不同步的解决方案, 每一个都证明在某些维度上是最佳的。 首先, 以最小直径平均值为基础, 需要 $\ geq 6f+1 美元, 但要在理论上实现最佳的平均平均常数, 直至一个多复制的常数。 第二, 根据可靠的广播和协调的三重量平均值, 实现最佳的拜占庭的复原力, 即 $n\ geq 3f+1$。 每一种这些算法都根据某种维度平均值, 要求一个最佳的拜占庭合作学习中度协议。

0
下载
关闭预览

相关内容

【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
127+阅读 · 2021年7月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
127+阅读 · 2021年7月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员