We propose a new model of Bayesian Neural Networks to not only detect the events of compact binary coalescence in the observational data of gravitational waves (GW) but also identify the full length of the event duration including the inspiral stage. This is achieved by incorporating the Bayesian approach into the CLDNN classifier, which integrates together the Convolutional Neural Network (CNN) and the Long Short-Term Memory Recurrent Neural Network (LSTM). Our model successfully detect all seven BBH events in the LIGO Livingston O2 data, with the periods of their GW waveforms correctly labeled. The ability of a Bayesian approach for uncertainty estimation enables a newly defined `awareness' state for recognizing the possible presence of signals of unknown types, which is otherwise rejected in a non-Bayesian model. Such data chunks labeled with the awareness state can then be further investigated rather than overlooked. Performance tests with 40,960 training samples against 512 chunks of 8-second real noise mixed with mock signals of various optimal signal-to-noise ratio $0 \leq \rho_\text{opt} \leq 18$ show that our model recognizes 90% of the events when $\rho_\text{opt} >7$ (100% when $\rho_\text{opt} >8.5$) and successfully labels more than 95% of the waveform periods when $\rho_\text{opt} >8$. The latency between the arrival of peak signal and generating an alert with the associated waveform period labeled is only about 20 seconds for an unoptimized code on a moderate GPU-equipped personal computer. This makes our model possible for nearly real-time detection and for forecasting the coalescence events when assisted with deeper training on a larger dataset using the state-of-art HPCs.
翻译:我们提出一个新的贝亚神经网络模型, 以便不仅在重力波(GW)的观测数据中检测到紧凑的二进制联结事件。 我们的模型不仅在重力波(GW)的观测数据中检测到所有7 BBH事件, 而且还确定了整个事件持续时间的长度, 包括呼吸阶段。 这是通过将巴伊西亚方法纳入“NNN”分类器实现的, 该分类器将 Convolual Neal网络(CNN) 和长期短期内存常规网络网络网络(LSTM) 整合在一起。 我们的模型(LIGIG Livingston O2) 数据中的所有7 BBH事件都成功检测到, 其GW 波形结构的周期也是正确的。 巴伊西亚方法的不确定性估计能力使得新定义的“ 认识” 未知类型信号的存在, 而在非Bayesian 模型(GN_Q_rx) 数据测试中被否决。 这样的数据块可以进一步调查, 而不是被忽略。 当 512个实际的测试时, 将40, 实际的样本与512块进行测试, 和模拟信号- 美元 美元- 美元的模拟的模拟信号信号- 美元- 接近值 美元- 美元- 值的数值值的数值 值 值 接近值 接近值 值 值 值 接近值 值 值 值 。