Modeling is a challenging topic and using parametric models is an important stage to reach flexible function for modeling. Weibull distribution has two parameters which are shape $\alpha$ and scale $\beta$. In this study, bimodality parameter is added and so bimodal Weibull distribution is proposed by using a quadratic transformation technique used to generate bimodal functions produced due to using the quadratic expression. The analytical simplicity of Weibull and quadratic form give an advantage to derive a bimodal Weibull via constructing normalizing constant. The characteristics and properties of the proposed distribution are examined to show its usability in modeling. After examination as first stage in modeling issue, it is appropriate to use bimodal Weibull for modeling data sets. Two estimation methods which are maximum $\log_q$ likelihood and its special form including objective functions $\log_q(f)$ and $\log(f)$ are used to estimate the parameters of shape, scale and bimodality parameters of the function. The second stage in modeling is overcome by using heuristic algorithm for optimization of function according to parameters due to fact that converging to global point of objective function is performed by heuristic algorithm based on the stochastic optimization. Real data sets are provided to show the modeling competence of the proposed distribution.
翻译:建模是一个具有挑战性的主题, 使用参数模型是一个重要阶段, 以便实现建模的灵活功能。 Weibull 分布有两个参数, 形状为$\ alpha$ 和比例为$\ beeta$ 。 在本研究中, 添加双式参数, 并因此建议双式 Weibull 分布, 使用二次式转换技术产生双式函数, 因为使用二次式表达式产生双式函数。 Weibull 和 二次式形式的分析简单化使得通过构建正态常态常态常态常态来获取双式 Weibull 参数。 正在对拟议分布的特性和属性进行检查, 以显示其在建模问题的第一阶段后, 可以使用双式 Weibonal Weibull 来建模数据集。 两种估算方法, 最大值为$\log_ q( f) 美元和 $\ log (f), 用于估算形状、 比例和双式常态参数的参数。 建模的第二个阶段, 模型化阶段通过模型的配置, 正在克服, 将正态模型配置为他为最优化的模型定位功能, 的定位功能,, 以正态演制成为最优化功能, 以正态演制成为该功能的正态演算法,, 以正态演制成, 以正态演制成为最佳的正态演算法, 以显示最佳的正态演算。