When subjected to automated decision-making, decision-subjects will strategically modify their observable features in ways they believe will maximize their chances of receiving a desirable outcome. In many situations, the underlying predictive model is deliberately kept secret to avoid gaming and maintain competitive advantage. This opacity forces the decision subjects to rely on incomplete information when making strategic feature modifications. We capture such settings as a game of Bayesian persuasion, in which the decision-maker sends a signal, e.g., an action recommendation, to a decision subject to incentivize them to take desirable actions. We formulate the decision-maker's problem of finding the optimal Bayesian incentive-compatible (BIC) action recommendation policy as an optimization problem and characterize the solution via a linear program. Through this characterization, we observe that while the problem of finding the optimal BIC recommendation policy can be simplified dramatically, the computational complexity of solving this linear program is closely tied to (1) the relative size of the decision-subjects' action space, and (2) the number of features utilized by the underlying predictive model. Finally, we provide bounds on the performance of the optimal BIC recommendation policy and show that it can lead to arbitrarily better outcomes compared to standard baselines.
翻译:在进行自动化决策时,决策主体将从战略角度修改其可观察的特征,以其认为将最大限度地增加其获得理想结果的机会的方式从战略角度修改其可观察特征。在许多情况下,基本预测模型被故意保密,以避免赌博和保持竞争优势。这种不透明迫使决策主体在进行战略特征修改时依赖不完整的信息。我们捕捉到贝叶西亚说服游戏等环境,决策者在游戏中发出信号,例如行动建议,鼓励他们采取可取的行动。我们将决策者发现最佳巴伊西亚激励兼容行动建议政策的问题作为优化问题,并通过线性方案描述解决办法。我们通过这一特征,注意到,虽然找到最佳BIC建议政策的问题可以大大简化,但解决这一线性方案的计算复杂性与 (1) 决策主体行动空间的相对规模和(2) 基本预测模式所使用的特征数目密切相关。最后,我们为最佳BIC建议的执行提供了界限,通过线性方案描述解决办法。我们注意到,虽然找到最佳BIC建议政策的问题可以大大简化,但解决这一线性方案的计算复杂性与决定主体行动空间的相对大小密切相关,以及(2) 基本预测模型所使用的特征数目。我们提供了最佳基准,可以比标准更精确地与标准的结果。