Molecular photo-switches as, e.g., azobenzene molecules allow, when embedded into a polymeric matrix, for photo-active polymer compounds responding mechanically when exposed to light of certain wavelength. Photo-mechanics, i.e. light-matter interaction in photo-active polymers holds great promise for, e.g., remote and contact-free activation of photo-driven actuators. In a series of earlier contributions, Oates et al. developed a successful continuum formulation for the coupled electric, electronic and mechanical problem capturing azobenzene polymer compounds, thereby mainly focussing on geometrically linearized kinematics. Building on that formulation, we here explore the variational setting of a geometrically exact continuum framework based on Dirichlet's and Hamilton's principle as well as, noteworthy, Hamilton's equations. Thereby, when treating the dissipative case, we resort to incremental versions of the various variational problems via suited incorporation of a dissipation potential. In particular, the Hamiltonian setting of geometrically exact photo-mechanics is up to now largely under-explored even for the energetic case, arguably since the corresponding Lagrangian is degenerate in Dirac's sense. Moreover, in general, the Hamiltonian setting of dissipative dynamical systems is a matter of ongoing debate per se. In this contribution, by advocating a novel incremental version of the Hamiltonian setting exemplified for the dissipative case of photo-mechanics, we aim to also unify the variational approach to dissipative dynamical systems. Taken together, the variational setting of a geometrically exact continuum framework of photo-mechanics paves the way for forthcoming theoretical and numerical analyses.
翻译:分子光电开关, 例如, 单苯分子, 当嵌入聚合体矩阵时, 允许光活聚合物化合物在暴露于某种波长的光线下机械地反应。 光动机械, 即光动聚合物中的光物质互动, 对光动动动动动动动动器的远程和无接触激活有着巨大的希望。 在早期的一系列贡献中, Oates et al. 开发了一个成功的连续配方, 用于同时处理电动、 电子和机械问题, 捕捉 氮苯聚合化合物, 从而主要侧重于几何性直线性线性运动运动。 以这种配方为基础, 我们在这里探索一个基于 Drichlet 和 汉密尔顿 原理以及 汉密尔顿 方程式的地理精确连续框架的变异性设置。 因此, 当处理这个分解性案例时, 我们采用渐进式的变异性版本, 特别是, 汉密尔顿式的直线性运动运动运动运动运动运动运动运动运动的动力运动, 从现在的平时, 将一个正动的直态的直位数据分析到直流的直流的直流的直态的直位数字,, 直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观, 直观, 直观推到直观的直观的直观的直观的直观的直观系统, 直观的直观的直观的直观的直观的直观推到直观推到直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观推到直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观分析,, 直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直向的直观的直向直向直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的直观的