This paper proposes a framework for 3D obstacle avoidance in the presence of partial observability of environment obstacles. The method focuses on the utility of the Artificial Potential Function (APF) controller in a practical setting where noisy and incomplete information about the proximity is inevitable. We propose a Particle Filter (PF) approach to estimate potential obstacle locations in an input depth image stream. The probable candidates are then used to generate an action that maneuvers the robot towards the negative gradient of potential at each time instant. Rigorous experimental validation on a quadrotor UAV highlights the robustness and reliability of the method when robot's sensitivity to incorrect perception information can be concerning. The proposed perception and control stack is run onboard the UAV, demonstrating the computational feasibility for real-time applications and agile robots.
翻译:本文件提出了在环境障碍部分可视性的情况下避免三维障碍的框架。该方法侧重于人工潜在功能控制器在实际环境中的有用性,因为在实际环境中,关于近距离的信息噪音和不完整是不可避免的。我们建议采用粒子过滤器(PF)方法,在输入深度图像流中估计潜在的障碍位置。然后,可能的候选人被用来产生一个动作,使机器人在每次瞬间都向潜在负梯度运动。对一个夸德罗托尔无人机的严格实验性验证突出表明,当机器人对错误的认知信息敏感时,该方法的可靠性和可靠性会突出。拟议的感知和控制堆将在无人机上运行,展示实时应用和灵活机器人的计算可行性。