This paper presents a decentralized and asynchronous systematic solution for multi-robot autonomous navigation in unknown obstacle-rich scenes using merely onboard resources. The planning system is formulated under gradient-based local planning framework, where collision avoidance is achieved by formulating the collision risk as a penalty of a nonlinear optimization problem. In order to improve robustness and escape local minima, we incorporate a lightweight topological trajectory generation method. Then agents generate safe, smooth, and dynamically feasible trajectories in only several milliseconds using an unreliable trajectory sharing network. Relative localization drift among agents is corrected by using agent detection in depth images. Our method is demonstrated in both simulation and real-world experiments. The source code is released for the reference of the community.
翻译:本文件仅利用机载资源,为在未知障碍程度高的场景中多机器人自主航行提供分散的、非同步的系统性解决办法。规划系统是根据基于梯度的地方规划框架制定的,通过将碰撞风险作为非线性优化问题的一种惩罚来避免碰撞。为了提高稳健性和避免局部微粒,我们采用了轻量地表层轨迹生成方法。然后,在仅仅几毫秒内,就使用不可靠的轨迹共享网络产生安全、平稳和动态可行的轨迹。通过深度图像的代理探测,对代理人之间的相对本地化漂移进行纠正。我们的方法在模拟和现实世界实验中都得到了证明。源代码被发布供社区参考。