Modulating image restoration level aims to generate a restored image by altering a factor that represents the restoration strength. Previous works mainly focused on optimizing the mean squared reconstruction error, which brings high reconstruction accuracy but lacks finer texture details. This paper presents a Controllable Unet Generative Adversarial Network (CUGAN) to generate high-frequency textures in the modulation tasks. CUGAN consists of two modules -- base networks and condition networks. The base networks comprise a generator and a discriminator. In the generator, we realize the interactive control of restoration levels by tuning the weights of different features from different scales in the Unet architecture. Moreover, we adaptively modulate the intermediate features in the discriminator according to the severity of degradations. The condition networks accept the condition vector (encoded degradation information) as input, then generate modulation parameters for both the generator and the discriminator. During testing, users can control the output effects by tweaking the condition vector. We also provide a smooth transition between GAN and MSE effects by a simple transition method. Extensive experiments demonstrate that the proposed CUGAN achieves excellent performance on image restoration modulation tasks.
翻译:移动图像恢复水平的目的是通过改变一个代表恢复强度的因素来生成一个恢复图像。 先前的工作主要侧重于优化平均平方重建错误, 从而带来较高的重建精确度, 但没有精细的纹理细节。 本文介绍了一个可控Unet Genementation Aversarial 网络( CUGAN), 用于在调制任务中生成高频质素。 CUGAN 由两个模块组成 -- -- 基础网络和条件网络。 基础网络包括一个发电机和一个导体。 在生成器中, 我们通过调适来自 Unet 结构不同规模的不同特征的重量, 实现了对恢复水平的交互控制。 此外, 我们根据降解的严重程度调整了导体的中间特征。 条件网络接受条件矢量( 加密降解信息) 作为输入, 然后生成发电机和导体的调制参数。 在测试过程中, 用户可以通过调控条件矢量来控制输出效果。 我们还通过简单的转换方法在GAN 和MSE 影响之间实现一个平稳的转换。 广泛的实验表明, 拟议的 CUGAN 恢复图像任务在恢复方面实现了极好的性工作。