Determinantal point processes (DPPs) are repulsive point processes where the interaction between points depends on the determinant of a positive-semi definite matrix. In this paper, we study the limiting process of L-ensembles based on kernel matrices, when the kernel function becomes flat (so that every point interacts with every other point, in a sense). We show that these limiting processes are best described in the formalism of extended L-ensembles and partial projection DPPs, and the exact limit depends mostly on the smoothness of the kernel function. In some cases, the limiting process is even universal, meaning that it does not depend on specifics of the kernel function, but only on its degree of smoothness. Since flat-limit DPPs are still repulsive processes, this implies that practically useful families of DPPs exist that do not require a spatial length-scale parameter.
翻译:确定点进程(DPPs)是令人厌恶的点点进程,其中点之间的相互作用取决于正偏确定矩阵的决定因素。 在本文件中,我们研究以内核基体为基础的L-ensembles限制过程,当内核函数变得平坦时(这样每个点都与其他每个点发生互动,从某种意义上讲 ) 。 我们表明,这些限制过程最好在扩展的L-ensembles和部分投影DPP的形式主义中加以描述,而确切的限度主要取决于内核功能的平滑性。 在某些情况下,限制过程甚至具有普遍性,这意味着它并不取决于内核功能的具体特性,而只是取决于其平滑性的程度。 由于平坦的DPPs仍然是令人厌恶的过程,这意味着实际上有用的DPs组合并不需要空间长度参数。