Estimating individual treatment effects (ITEs) from observational data is relevant in many fields such as personalized medicine. However, in practice, the treatment assignment is usually confounded by unobserved variables and thus introduces bias. A remedy to remove the bias is the use of instrumental variables (IVs). Such settings are widespread in medicine (e.g., trials where compliance is used as binary IV). In this paper, we propose a novel, multiply robust machine learning framework, called MRIV, for estimating ITEs using binary IVs and thus yield an unbiased ITE estimator. Different from previous work for binary IVs, our framework estimates the ITE directly via a pseudo outcome regression. (1) We provide a theoretical analysis where we show that our framework yields multiply robust convergence rates: our ITE estimator achieves fast convergence even if several nuisance estimators converge slowly. (2) We further show that our framework asymptotically outperforms state-of-the-art plug-in IV methods for ITE estimation. (3) We build upon our theoretical results and propose a tailored deep neural network architecture called MRIV-Net for ITE estimation using binary IVs. Across various computational experiments, we demonstrate empirically that our MRIV-Net achieves state-of-the-art performance. To the best of our knowledge, our MRIV is the first machine learning framework for estimating ITEs in the binary IV setting shown to be multiply robust.
翻译:从观察数据中估算个人治疗效果(ITE)在许多领域(如个性化医学)是相关的。然而,在实践中,治疗任务通常由未观测到的变量混在一起,从而引入偏见。消除偏差的补救措施是使用工具变量(IVs)。这种设置在医学上很普遍(例如,在将遵守用作二进制四的试验中,这种环境在医学上很普遍)。 在本文件中,我们提议了一个新颖的、倍增强的机械学习框架,称为MRIV,用于使用二进制四四四来估算ITE,从而产生一个公正的ITE估计器。 与以前关于二进四的工作不同,我们的框架通过假结果回归直接估算ITE。 (1) 我们提供理论分析,表明我们的框架将产生强大的趋同率:我们的ITE估计值在快速趋同上,即使若干质疑性估计值是缓慢的。 (2) 我们还进一步表明,我们的框架在结构中,从表面上显示的四进化四进制四的四进制四进制四的四进制四中,我们的最佳理论结果,并提议对深度神经网络进行量化的实验,即MRIV进行我们所显示的实验性模型的计算。