We propose a method for learning constraints represented as Gaussian processes (GPs) from locally-optimal demonstrations. Our approach uses the Karush-Kuhn-Tucker (KKT) optimality conditions to determine where on the demonstrations the constraint is tight, and a scaling of the constraint gradient at those states. We then train a GP representation of the constraint which is consistent with and which generalizes this information. We further show that the GP uncertainty can be used within a kinodynamic RRT to plan probabilistically-safe trajectories, and that we can exploit the GP structure within the planner to exactly achieve a specified safety probability. We demonstrate our method can learn complex, nonlinear constraints demonstrated on a 5D nonholonomic car, a 12D quadrotor, and a 3-link planar arm, all while requiring minimal prior information on the constraint. Our results suggest the learned GP constraint is accurate, outperforming previous constraint learning methods that require more a priori knowledge.
翻译:我们提出一种学习限制的方法,比如当地最佳演示的Gaussian过程(GPs) 。 我们的方法是使用Karush-Kuhn-Tucker(KKT)的最佳条件来确定示威的制约在哪里, 并缩小这些州的限制梯度。 然后我们训练GP代表与该限制相一致的制约, 并概括这种信息。 我们进一步显示, GP不确定性可以在运动力RRT中用于计划概率安全的轨道, 我们可以利用规划者内部的GP结构来精确地实现特定的安全概率。 我们展示了我们的方法可以学习5D非holonomic汽车、 12D 夸德罗托和 3nink平臂上显示的复杂、非线性的限制, 同时需要最起码的关于限制的信息。 我们的结果表明, 学到的GP限制是准确的, 超过以往的制约学习方法, 需要更先入手的知识。