Mitral valve repair is a surgery to restore the function of the mitral valve. To achieve this, a prosthetic ring is sewed onto the mitral annulus. Analyzing the sutures, which are punctured through the annulus for ring implantation, can be useful in surgical skill assessment, for quantitative surgery and for positioning a virtual prosthetic ring model in the scene via augmented reality. This work presents a neural network approach which detects the sutures in endoscopic images of mitral valve repair and therefore solves a landmark detection problem with varying amount of landmarks, as opposed to most other existing deep learning-based landmark detection approaches. The neural network is trained separately on two data collections from different domains with the same architecture and hyperparameter settings. The datasets consist of more than 1,300 stereo frame pairs each, with a total over 60,000 annotated landmarks. The proposed heatmap-based neural network achieves a mean positive predictive value (PPV) of 66.68$\pm$4.67% and a mean true positive rate (TPR) of 24.45$\pm$5.06% on the intraoperative test dataset and a mean PPV of 81.50\pm5.77\% and a mean TPR of 61.60$\pm$6.11% on a dataset recorded during surgical simulation. The best detection results are achieved when the camera is positioned above the mitral valve with good illumination. A detection from a sideward view is also possible if the mitral valve is well perceptible.
翻译:光纤阀门修理是一种修复线性阀门功能的手术。 为了达到这个目的, 假肢环被缝合在线性切除器上。 分析缝合器通过环植入的擦除器穿透, 可用于外科技能评估、 定量手术和通过放大现实在现场定位虚拟假肢环模型。 这项工作是一个神经网络方法, 检测线性阀修复图象的缝合, 从而解决一个具有里程碑意义的探测问题, 与大多数现有的基于深层学习的地标探测方法相比, 具有不同程度的地标。 对神经网络进行单独培训, 以来自不同区域的双项数据收集, 使用相同的建筑和超分光度设置。 数据集由1,300多个立体框组成, 总共超过60,000个附加注释的地标。 拟议的以热马普基神经网络, 平均预测值为66, 688美元=4.67 %, 以24. 45\\ pm 的图像检测结果显示为24. 45\\ m 内部测试结果。 中, Pralalalalalal5.066 中, 的Servialalalalalalalalalalalal 数据记录为平均值为0.6 。