This paper considers a multi-user downlink scheduling problem with access to the channel state information at the transmitter (CSIT) to minimize the Age-of-Information (AoI) in a non-stationary environment. The non-stationary environment is modelled using a novel adversarial framework. In this setting, we propose a greedy scheduling policy, called MA-CSIT, that takes into account the current channel state information. We establish a finite upper bound on the competitive ratio achieved by the MA-CSIT policy for a small number of users and show that the proposed policy has a better performance guarantee than a recently proposed greedy scheduler that operates without CSIT. In particular, we show that access to the additional channel state information improves the competitive ratio from 8 to 2 in the two-user case and from 18 to 8/3 in the three-user case. Finally, we carry out extensive numerical simulations to quantify the advantage of knowing CSIT in order to minimize the Age-of-Information for an arbitrary number of users.


翻译:本文考虑了在非静止环境中获取发报机(发报机)的频道状态信息的多用户下行列表问题,以尽量减少信息年龄(AoI)在非静止环境中的情况。非静止环境是采用新的对抗框架的模式。在这一背景下,我们提出一项贪婪的列表政策,称为MA-CSIT,其中考虑到目前的频道状态信息。我们为少数用户确定了一个有限的最高限值。我们表明,拟议政策比最近提出的没有CSIT运作的贪婪调度器有更好的绩效保障。我们特别表明,获取额外频道状态信息使竞争比率从2个用户案件中的8到2,3个用户案件中的18到8/3得到改善。最后,我们进行了广泛的数字模拟,以量化了解CSIT的优势,从而尽可能减少任意用户的信息年龄。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月15日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员