It is a long-standing challenge to reconstruct Cone Beam Computed Tomography (CBCT) of the lung under respiratory motion. This work takes a step further to address a challenging setting in reconstructing a multi-phase}4D lung image from just a single}3D CBCT acquisition. To this end, we introduce REpiratory-GAted Synthesis of views, or REGAS. REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images. This method allows a much better estimation of between-phase Deformation Vector Fields (DVFs), which are used to enhance reconstruction quality from direct observations without synthesis. To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections. REGAS require no additional measurements like prior scans, air-flow volume, or breathing velocity. Our extensive experiments show that REGAS significantly outperforms comparable methods in quantitative metrics and visual quality.
翻译:重建呼吸运动下肺部的Cone Beam 计算成形成像(CBCT)是一项长期挑战。这项工作向前迈出了一步,以解决从单}3D CBCT获取中重建多相4D肺图象的富有挑战性的环境。为此,我们引入了对观点进行呼吸合成的合成,即REGAS。REGAS提出了一种自我监督的方法,以综合未充分取样的成像视图,并减少在重建图像中的别名。这一方法使得能够对不同阶段变异矢量场(DVFs)之间进行更好的估计,后者用于从直接观测中提高重建质量,而无需合成。为了解决高分辨率4D数据深度神经网络的巨大记忆成本,REGAS引入了一种新的雷光路径变换(RPT),允许进行分布式、不同的远方预测。REGAS不需要像先前扫描、空气流量或呼吸速度那样的额外测量。我们的广泛实验显示,REGAS在定量测量和视觉质量上明显超出可比较的方法。