We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. Let $IP$ denote Inner Product on $2b$ bits. 1) If $f$ is a total Boolean function that depends on all of its inputs, the bounded-error one-way quantum communication complexity of $f \circ IP$ equals $\Omega(n(b-1))$. 2) If $f$ is a partial Boolean function, the deterministic one-way communication complexity of $f \circ IP$ is at least $\Omega(b \cdot D_{dt}^{\rightarrow}(f))$, where $D_{dt}^{\rightarrow}(f)$ denotes the non-adaptive decision tree complexity of $f$. For our quantum lower bound, we show a lower bound on the VC-dimension of $f \circ IP$, and then appeal to a result of Klauck [STOC'00]. Our deterministic lower bound relies on a combinatorial result due to Frankl and Tokushige [Comb.'99]. It is known due to a result of Montanaro and Osborne [arXiv'09] that the deterministic one-way communication complexity of $f \circ XOR_2$ equals the non-adaptive parity decision tree complexity of $f$. In contrast, we show the following with the gadget $AND_2$. 1) There exists a function for which even the randomized non-adaptive AND decision tree complexity of $f$ is exponentially large in the deterministic one-way communication complexity of $f \circ AND_2$. 2) For symmetric functions $f$, the non-adaptive AND decision tree complexity of $f$ is at most quadratic in the (even two-way) communication complexity of $f \circ AND_2$. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of $f$ does not lift to a lower bound on one-way communication complexity of $f \circ AND_2$. The proof of the first bullet above uses the well-studied Odd-Max-Bit function.


翻译:我们研究各种单向通信复杂度与外部功能的类似决定树复杂度的复杂度之间的关系。 我们考虑两种方法: 2个输入的复杂度和功能, 以及恒定投入量的内产值。 $IP$表示内产值为 2b美元位数。 1 如果美元是一个取决于其所有投入的全Boolean函数, 约束性- 错误的单向量通信复杂度等于 美元circ IP2 (n(b-1)美元) 。 2 如果美元是一个部分的Boolean 功能, 则美元对内产值的确定性单向性单向通信复杂性。 美元===D&d=D&trightarrow}(f), 美元的内产值表示不适应性决定的复杂度为$2美元。 对于我们的量小的通讯来说, 我们显示一个较低的 VC- dional- dision $xxxx次的内产值。

0
下载
关闭预览

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
0+阅读 · 2021年6月22日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员