We construct a quantum oracle relative to which $\mathsf{BQP} = \mathsf{QMA}$ but cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light of the fact that pseudorandom states can be "broken" by quantum Merlin-Arthur adversaries. We explain how this nuance arises as the result of a distinction between algorithms that operate on quantum and classical inputs. On the other hand, we show that some computational complexity assumption is needed to construct pseudorandom states, by proving that pseudorandom states do not exist if $\mathsf{BQP} = \mathsf{PP}$. We discuss implications of these results for cryptography, complexity theory, and quantum tomography.
翻译:我们构建了一个量子神器, 相对于它, $\ mathsf{BQP} =\ mathsf ⁇ ma} = mathsf ⁇ ma} 美元, 但加密伪冒伪冒量量度和伪冒随机质单一变换存在, 反直觉的结果是伪冒数国可能会被 Merlin- Arthur 量子敌者“ 撕裂 ” 。 我们解释这种细微现象是如何由量数和古典输入的算法之间的区别而产生的。 另一方面, 我们证明, 建立假冒国需要某种计算的复杂性假设, 证明假冒国不存在, 如果 $\ mathsf{BQP} =\ mathsf{PP} $。 我们讨论这些结果对加密、 复杂理论 和量子图学的影响 。