Modern image generative models show remarkable sample quality when trained on a single domain or class of objects. In this work, we introduce a generative adversarial network that can simultaneously generate aligned image samples from multiple related domains. We leverage the fact that a variety of object classes share common attributes, with certain geometric differences. We propose Polymorphic-GAN which learns shared features across all domains and a per-domain morph layer to morph shared features according to each domain. In contrast to previous works, our framework allows simultaneous modelling of images with highly varying geometries, such as images of human faces, painted and artistic faces, as well as multiple different animal faces. We demonstrate that our model produces aligned samples for all domains and show how it can be used for applications such as segmentation transfer and cross-domain image editing, as well as training in low-data regimes. Additionally, we apply our Polymorphic-GAN on image-to-image translation tasks and show that we can greatly surpass previous approaches in cases where the geometric differences between domains are large.
翻译:现代图像基因化模型在就单一领域或对象类别进行培训时显示出显著的样本质量。 在这项工作中,我们引入了一个同时从多个相关领域生成一致图像样本的基因对抗网络。 我们利用了以下事实,即各种对象类别具有共同属性,并存在某些几何差异。 我们建议多色- GAN 学习所有领域和单色色色相的共有特征,以便根据每个领域来改变共同特征。 与以往的工程不同, 我们的框架允许同时模拟具有高度差异的图像, 如人脸、油漆和艺术面孔以及多种不同动物面孔的图像。 我们证明我们的模型为所有领域生成了一致样本, 并展示如何将其用于诸如分化传输和跨面图像编辑等应用, 以及低数据制度的培训。 此外, 我们用我们的多元性- GAN 来应用图像到图像转换任务, 并表明在地区间地理差异很大的情况下, 我们可以大大超过以往的方法 。