The brain structural connectome is generated by a collection of white matter fiber bundles constructed from diffusion weighted MRI (dMRI), acting as highways for neural activity. There has been abundant interest in studying how the structural connectome varies across individuals in relation to their traits, ranging from age and gender to neuropsychiatric outcomes. After applying tractography to dMRI to get white matter fiber bundles, a key question is how to represent the brain connectome to facilitate statistical analyses relating connectomes to traits. The current standard divides the brain into regions of interest (ROIs), and then relies on an adjacency matrix (AM) representation. Each cell in the AM is a measure of connectivity, e.g., number of fiber curves, between a pair of ROIs. Although the AM representation is intuitive, a disadvantage is the high-dimensionality due to the large number of cells in the matrix. This article proposes a simpler tree representation of the brain connectome, which is motivated by ideas in computational topology and takes topological and biological information on the cortical surface into consideration. We demonstrate that our tree representation preserves useful information and interpretability, while reducing dimensionality to improve statistical and computational efficiency. Applications to data from the Human Connectome Project (HCP) are considered and code is provided for reproducing our analyses.
翻译:从年龄和性别到神经心理结果,大脑结构连接由一系列从传播加权MRI(dMRI)建立起来的白色物质纤维捆绑组成,作为神经活动的高速公路。人们非常有兴趣研究结构连接体在个人特征方面,从年龄和性别到神经心理结果,从年龄和性别到神经神经心理结果,结构连接体的差异。在对DMRI应用地形图谱以获得白色物质纤维捆绑之后,一个关键问题是如何代表大脑连接体,以便利与特征相联系的连接体有关的统计分析。目前的标准将大脑分为感兴趣的区域(ROI),然后依赖一个相邻矩阵代表体。AM中的每个细胞都是衡量连接度的尺度,例如,纤维曲线的数目,一对机器人之间。虽然AM的表示是直观的,但一个缺点在于由于矩阵中有大量细胞,因此大脑连接体会具有高度的特性。这篇文章提出了更简单的大脑连接体的树代表,其动机是计算表层学的理念,并且从表面表面的表层和生物信息到生物表面的考虑。我们展示了我们所研究的图解的图理学和图理学分析是有用的数据流化数据,我们从空间的模型的模型的模型的模型的计算分析提供了有用的数据解释和可判读性分析。我们的数据。 我们的数字化的数字化的数字化的数字化的数字化的计算是用来保存了我们的图解。 我们的数字化的数字化的数字化的数字化的数字化的数字化的计算。 我们的数字化的数字化和可判读。我们提供了我们的图。 我们提供了我们的图理学数据。