Transaction fee markets are essential components of blockchain economies, as they resolve the inherent scarcity in the number of transactions that can be added to each block. In early blockchain protocols, this scarcity was resolved through a first-price auction in which users were forced to guess appropriate bids from recent blockchain data. Ethereum's EIP-1559 fee market reform streamlines this process through the use of a base fee that is increased (or decreased) whenever a block exceeds (or fails to meet) a specified target block size. Previous work has found that the EIP-1559 mechanism may lead to a base fee process that is inherently chaotic, in which case the base fee does not converge to a fixed point even under ideal conditions. However, the impact of this chaotic behavior on the fee market's main design goal -- blocks whose long-term average size equals the target -- has not previously been explored. As our main contribution, we derive near-optimal upper and lower bounds for the time-average block size in the EIP-1559 mechanism despite its possibly chaotic evolution. Our lower bound is equal to the target utilization level whereas our upper bound is approximately 6% higher than optimal. Empirical evidence is shown in great agreement with these theoretical predictions. Specifically, the historical average was approximately 2.9% larger than the target rage under Proof-of-Work and decreased to approximately 2.0% after Ethereum's transition to Proof-of-Stake. We also find that an approximate version of EIP-1559 achieves optimality even in the absence of convergence.


翻译:交易费用市场是链链经济体的基本组成部分,因为它们解决了每块交易数量中可以增加到每块交易数量的内在稀缺性。 在早期的链链协议中,这种稀缺性是通过第一次价格拍卖解决的,在这一拍卖中,用户被迫从最近的链链数据中猜测适当的出价。 Eceenum的 EIP-1559 费用市场改革通过使用基准费简化了这一进程,而每当一个块超过(或未能达到)特定目标区块规模时,基准费就会增加(或减少)。先前的工作发现,EIP-1559 机制可能会导致一个固有的混乱性基准费进程,在这种情况下,即使理想条件下,基准费也不会达到固定点。然而,这种混乱行为对收费市场主要设计目标 -- -- 其长期平均规模等于目标的区块 -- -- 的影响,以前没有探讨过。由于我们的主要贡献,我们发现EIP-1559 机制的时间平均区块规模的上限和下限几乎是最佳的。我们较低的约束与目标的使用水平相等,而我们的上限甚至更接近一个固定点点,我们的上限甚至比我们的上限要高出6 %的标值,在历史正标度之后, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员