Investigating uncertainties in computer simulations can be prohibitive in terms of computational costs, since the simulator needs to be run over a large number of input values. Building an emulator, i.e. a statistical surrogate model of the simulator, using a small design of experiments, greatly alleviates the computational burden to carry out such investigations. Nevertheless, this can still be above the computational budget for many studies. Two major approaches have been used are to reduce the budget needed to build the emulator: efficient design of experiments, such as sequential designs, and combining training data of different degrees of sophistication in a so-called multi-fidelity method, or multilevel in case these fidelities are ordered typically for increasing resolutions. We present here a novel method that combines both approaches, the multilevel adaptive sequential design of computer experiments (MLASCE) in the framework of Gaussian process (GP) emulators. We make use of reproducing kernel Hilbert spaces as a new tool for our GP approximations of the increments across levels. This dual strategy allows us to allocate efficiently limited computational resource over simulations of different levels of fidelity and build the GP emulator. The allocation of computational resources is shown to be the solution of a simple optimization problem in a special case where we theoretically prove the validity of our approach. Our proposed method is compared with other existing models of multi-fidelity Gaussian process emulation. Gains of orders of magnitudes in accuracy for medium-size computing budgets are demonstrated in numerical examples.


翻译:计算机模拟调查的不确定性在计算成本方面可能令人望而却步,因为模拟器需要用大量输入值来运行。 建立一个模拟器,即模拟器的统计替代模型,使用小规模的实验设计,大大减轻进行这种调查的计算负担。 然而,这仍然可能超出许多研究的计算预算。 已经使用了两个主要方法来减少建立模拟器所需的预算: 高效设计实验, 如顺序设计, 并结合不同程度精密的培训数据, 即所谓的多纤维度方法, 或多层次, 以备通常为增加分辨率而订购的这些对等数据。 我们在这里提出了一个新颖的方法, 将两种方法结合起来, 计算机实验的多层次适应性顺序设计( MLASCE ) 。 我们使用两种主要方法来减少建立模拟器所需的预算: 高效地设计像定级设计这样的实验, 以及将不同程度的精密度的精密度培训数据合并在一起, 这样的双重战略使我们得以在高层次上分配高效的精确度的计算方法, 一种特殊的精确度的计算方法的计算方法, 一种特殊的精确性模型显示我们目前对不同层次的精确度的精确度的计算方法的计算方法的精确度, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员