This article deals with the sequential design of experiments for (deterministic or stochastic) multi-fidelity numerical simulators, that is, simulators that offer control over the accuracy of simulation of the physical phenomenon or system under study. Very often, accurate simulations correspond to high computational efforts whereas coarse simulations can be obtained at a smaller cost. In this setting, simulation results obtained at several levels of fidelity can be combined in order to estimate quantities of interest (the optimal value of the output, the probability that the output exceeds a given threshold...) in an efficient manner. To do so, we propose a new Bayesian sequential strategy called Maximal Rate of Stepwise Uncertainty Reduction (MR-SUR), that selects additional simulations to be performed by maximizing the ratio between the expected reduction of uncertainty and the cost of simulation. This generic strategy unifies several existing methods, and provides a principled approach to develop new ones. We assess its performance on several examples, including a computationally intensive problem of fire safety analysis where the quantity of interest is the probability of exceeding a tenability threshold during a building fire.
翻译:本条涉及( 确定性或随机性) 多非性数字模拟器( 即模拟器) 的连续实验的顺序设计, 即对模拟物理现象或正在研究的系统的准确性提供控制的模拟器。 精确的模拟通常与高计算努力相对应, 而粗略的模拟则以较低的成本获得。 在这种背景下, 在若干水平的忠诚下取得的模拟结果可以合并, 以便以有效的方式估计利息数量( 产出的最佳价值, 产出超过某一阈值的概率... ) 。 为此, 我们建议采用新的巴耶斯顺序战略, 称为 " 逐步降低不确定性的最大比率 " ( MR-SUR), 选择额外的模拟方法, 最大限度地降低预期减少不确定性与模拟成本之间的比率。 这一通用战略将几种现有方法结合起来, 并提供一种原则性方法来开发新的方法。 我们根据几个例子评估其性表现, 包括一个计算密集的消防安全分析问题, 其中利息是建筑火灾期间超过耐性临界值的可能性。