Neural decoding plays a vital role in the interaction between the brain and the outside world. In this paper, we directly decode the movement track of a finger based on the neural signals of a macaque. Supervised regression methods may overfit to actual labels containing noise, and require a high labeling cost, while unsupervised approaches often have unsatisfactory accuracy. Besides, the spatial and temporal information is often ignored or not well exploited by those methods. This motivates us to propose a robust weakly-supervised method, called ViF-SD2E, for neural decoding. In particular, it consists of a space-division (SD) module and a exploration--exploitation (2E) strategy, to effectively exploit both the spatial information of the outside world and the temporal information of neural activity, where the SD2E output is analogized with the weak 0/1 vision-feedback (ViF) label for training. It is worth noting that the designed ViF-SD2E is based on a symmetric phenomenon between the unsupervised decoding trajectory and the real trajectory in previous observations, then a cognitive pattern of fuzzy (robust) interaction in the nervous system may be discovered by us. Extensive experiments demonstrate the effectiveness of our method, which can be sometimes comparable to supervised counterparts.
翻译:神经解码在大脑和外部世界之间的相互作用中起着关键作用。 在本文中, 我们直接根据一个暗淡的神经信号解码手指的移动轨迹。 受监督的回归方法可能过于适合含有噪音的实际标签, 需要很高的标签成本, 而不受监督的方法往往不准确。 此外, 空间和时间信息常常被这些方法忽略或没有很好地利用。 这促使我们为神经解码提出一种强力、 微弱的监管方法, 叫做 ViF- SD2E。 特别是, 它包括一个空间分解模块和探索开发(2E)战略, 以有效利用外部世界的空间信息以及神经活动的时空信息, 而在这种情况下, SD2E 输出与弱的 0/1 视野- 后背( VF) 培训标签是模拟的。 值得指出, 设计ViF- SD2E 是基于一个对等现象, 一种不超强的解码轨迹和真实的轨迹, 以及探索(2E) 战略, 有效地利用外部世界空间信息, 和神经活动的时间信息信息信息, 然后通过我们所发现的系统, 可以展示一种可比较的认知导的系统, 。