Trend filtering is a modern approach to nonparametric regression that is more adaptive to local smoothness than splines or similar basis procedures. Existing analyses of trend filtering focus on estimating a function corrupted by homoskedastic Gaussian noise, but our work extends this technique to general exponential family distributions. This extension is motivated by the need to study massive, gridded climate data derived from polar-orbiting satellites. We present algorithms tailored to large problems, theoretical results for general exponential family likelihoods, and principled methods for tuning parameter selection without excess computation.
翻译:趋势过滤是一种现代的非参数回归方法,它比样条或类似的基础程序更适应当地平滑性。现有的趋势过滤分析侧重于估计受同心高斯噪音破坏的功能,但我们的工作将这一技术扩大到一般指数式家庭分布。这一扩展的动机是需要研究极轨道卫星产生的大规模、网格化的气候数据。我们提出了适应大问题的算法、一般指数式家庭可能性的理论结果,以及不加超量计算地调整参数选择的原则方法。