We consider the tensor equation whose coefficient tensor is a nonsingular M-tensor and whose right side vector is nonnegative. Such a tensor equation may have a large number of nonnegative solutions. It is already known that the tensor equation has a maximal nonnegative solution and a minimal nonnegative solution (called extremal solutions collectively). However, the existing proofs do not show how the extremal solutions can be computed. The existing numerical methods can find one of the nonnegative solutions, without knowing whether the computed solution is an extremal solution. In this paper, we present new proofs for the existence of extremal solutions. Our proofs are much shorter than existing ones and more importantly they give numerical methods that can compute the extremal solutions. Linear convergence of these numerical methods is also proved under mild assumptions. Some of our discussions also allow the coefficient tensor to be a Z-tensor or allow the right side vector to have some negative elements.
翻译:我们考虑的是其系数强度为非单词M- tensor 且其右侧矢量为非负向的强方方方程式。 这样的强方方方程式可能有许多非负式的解决方案。 众所周知, 高方方程式有一个最大非负式解决方案, 并且有一个最小的非负式解决方案( 称为极端解决方案 ) 。 然而, 现有证据并不能显示如何计算极端的解决方案。 现有的数字方法可以找到一个非负式解决方案, 却不知道计算出来的解决方案是否是极端的解决方案。 本文中, 我们为存在极端方程式提供了新的证据。 我们的证据比现有方法要短得多, 更重要的是, 它们提供了可以计算极端方程式的数值方法。 这些数字方法的线性趋同性也以温和的假设为证明。 我们的一些讨论还允许数 数 20 成为Z- 10or, 或者允许右侧矢量的矢量含有一些负面元素。